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Abstract. The techniques of matrix dressing for config-
uration-interaction (CI)-type or coupled-electron-pair-
approximation (CEPA)-type correlation treatments are
reviewed with respect to the application to periodic
systems. All methods ranging from canonical second-
order Mgller—Plesset perturbation theory over CI of
single and double excitation, CEPA-0 or the averaged-
coupled-pair-functional to self-consistent size-consistent
CI can be formulated completely equivalently as an
eigenvalue problem or as a solution to a system of linear
equations. The size consistency of each method is
obtained in a natural way, and invariance under orbital
rotations is clearly assessible. A remark on the size
consistency of the Davidson correction is presented.
Additionally, the direct generation of localized Hartree—
Fock orbitals as basic ingredients for the correlation
calculations are addressed, as well as selected results on
ring molecules, polymers, and 3D cubic beryllium as a
model crystal.

Key words: Periodic systems — Correlation —
Dressing — Size consistency

1 Introduction

Quantum chemistry has been able to deal with the
electron correlation problem for a long time, overcom-
ing the limitations given by a single Hartree-Fock
reference wave function towards a description of the
true many-body system. At least when addressing small
molecules, a vast arsenal of methods is available,
implemented in standard program packages. The situa-
tion is much different in the case of infinite periodic
systems, where solid-state physics relies on density
functional theory or the use of model Hamiltonians,
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such as the spin models (Heisenberg or Ising Hamilto-
nian) or the Hubbard model. Only recently has serious
effort been made to introduce the known quantum
chemical methods for periodic systems — polymers,
surfaces, and crystals — to go beyond the one-electron
picture. Hartree—Fock theory within periodic boundary
conditions, together with the commonly employed linear
algebra, was formulated long ago [1, 2], and powerful
implementations, such as CRYSTAL [3], are available
to obtain a Hartree-Fock wave function expanded in
Gaussian basis functions, in complete analogy to basic
quantum chemical codes for studies on molecules.
Electron correlation may be accounted for by means of
density functionals [4] or by calculating correlation
contributions of small increments, obtained from ade-
quate molecular setups [5, 6]. The incremental approach
rests strongly on the hypothesis that the electron
correlation is in general of short-range nature.

The same hypothesis can be taken as a basis for a
correlation treatment entirely within the periodic-system
approach. Furnished with a set of sufficiently localized
orbitals, the individual contribution in the incremental
expansion can be looked for and summed up in a
straightforward manner. Additionally, quantum chemi-
cal correlation schemes can be applied directly when
respecting two basic aspects: the summation of contri-
butions may be truncated somewhere in space and the
correlation energy per unit cell is calculated directly, not
the correlation energy for a large setup, which will be
divided in a later step by the number of unit cells in-
volved in the actual calculation. As can be deduced from
the literature, the modern linear-scaling methods for
molecules [7] should also be able to furnish a correlation
energy per unit cell with manageable effort.

The purpose of this article is to present a language
and some aspects of up-to-date single-reference cor-
relation methods when adapting them to periodic
boundary conditions. The construction of localized
orbitals is recalled briefly in the next section, then con-
figuration interaction of single and double excitations
(CISD) and the coupled-electron-pair-approximation
(CEPA) in its simplest form (CEPA-0) are introduced
as basic schemes for the electron correlation problem



beyond perturbation theory. The articles by Kutzelnigg
[8], for the discussion of the correspondence of these
two methods Paldus et al. [9], and the more recently
published work of Meissner and Szalay and coworkers
[10], may serve as references. As a slightly different
access to the methods, dressing of the Hamiltonian
matrix involved permits access to all kinds of method-
ological variations up to coupled-cluster theory of
single and double excitations (CCSD) [11]. That the
individual methods are applicable to solids has been
shown in the literature [12, 13] as well; however, the
present formulation within dressing techniques may
shed some new light on the situation and existing
implementations.

Canonical second-order Mgller—Plesset perturbation
theory (MP2) is introduced as a small modification of
the procedure and the result on the behavior of David-
son’s correction to the CISD correlation energy is dis-
cussed. Some results on model ring systems, polymers
and a 3D crystal are shown as applications of the
working scheme and conclude the article.

2 Generating localized Hartree—Fock orbitals

In order to employ a quantum chemical correlation
scheme for a fragment of a molecule or the unit cell of a
periodic system, one of the basis ingredients is a set of
localized Hartree—Fock orbitals. It should, however, be
mentioned that the work of Sun and Bartlett [14] opens
an alternative way to the correlation problem in periodic
systems, relying entirely on the set of canonical Hartree—
Fock orbitals, i.e. the Bloch picture of the one-electron
theory.

Furthermore, two branches of development can be
distinguished. On one hand, local correlation methods
may invoke the full set of Hartree—Fock orbitals, the
occupied space and the virtual space. This is the strategy
followed as a basis for the present work. Large saving
can be achieved, on the other hand, by restricting the
virtual space either to well-adapted virtual orbitals, for
instance, the so-called pair natural orbitals [12, 15], or by
using simply the set of (nonorthogonal) atomic orbitals.
The basis of the latter has to be reduced for the presence
of the occupied molecular orbitals, but their degree of
localization may be a good counterweight of the more
complex algebra involved [16]. Thus, in these schemes
Hartree—Fock orbitals are used only to represent the
occupied space, as is also the intention of the recently
proposed localization scheme of Marzari and Vanderbilt
[17] or the construction scheme of Shukla and co
workers [18].

In the approach employed for the construction of
localized orbitals in the present case, the virtual space is
indispensable, for the following reason: the procedure
starts from highly localized guess orbitals and relies on a
self-consistency loop with three steps orthogonalization,
construction of a Fock matrix and diagonalization of a
simplified CI matrix, built from singly excited determi-
nants. Convergence is achieved when Brillouin’s theo-
rem 1is fulfilled, 1.e. the interaction of the reference wave
function with mono-excited wave functions vanishes:
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(©o[H|®) =0 . (1)

For the description of a monoexcitation, a notion is
needed of what a virtual orbital may be. This can be either
the (reduced) set of nonorthogonal atomic basis func-
tions, which leads to the quite complex nonorthogonal CI
algebra[19, 20], or it may be a set of orthogonalized guess
orbitals. The orthogonalization step, in the iteration
scheme employed, is, therefore, organized in a hierarchi-
cal manner, in orthogonalizing first the occupied molec-
ular orbitals among themselves, then projecting out the
occupied space from the orbitals designed to be virtuals
and, last, orthogonalizing the virtual orbitals among
themselves. For the first and third step, the symmetric
Lowdin orthogonalization with S~1/2 is used, since this
preserves the individual functions as much as possible.

This procedure has been presented in the literature
several times already [21-23], and some more details of
an implementation for ring systems can be found in Ref.
[24]. One of the major drawbacks lies in the difficulties of
orthogonalizing the virtual orbitals among themselves,
in particular when studying infinite periodic systems,
where orthogonalization tails may become rather long-
ranged. For the present study, where some aspects of the
correlation problem address near-metallic systems, most
of the work is carried out on ring systems, where the
orthogonalization can be performed exactly within
nontruncated and still finite matrices.

3 Electron correlation schemes

The simplest correlation schemes, also applicable to
periodic systems, are given by perturbation theory. The
partition of the full Hamiltonian into its contributions
from the Fock matrix and a perturbation (Mgller—
Plesset) or into the diagonal part of the full Hamiltonian
|®;)(D;|H|®,;){®D;| and a perturbation (Epstein—Nesbet)
has been discussed elsewhere [25]. In the present work,
schemes beyond perturbation theory are addressed,
coming, on one hand, from the variational CI approach
and, on the other hand from the a priori size-consistent
coupled-cluster ansatz. In the literature, the connections
between the two extreme points of view have been the
subject of numerous publications [§—10] and can be used
in the present context as the general view on the different
methods is completely independent of whether the type
of system studied is molecular or periodic. Therefore, the
general statements of this section are useful for both
types of systems. The notation employed is that for a
ring system, made of N equal unit cells; thus, a molecule
will be the special case of a one-cell ring and a polymer
will be the limit towards an infinite number of cells.
Note, that going to infinite 3D systems will not alter
the logic, only the connectivity of the unit cells and,
especially, the number of neighboring cells changes.
Since in any dimension cell indices can be enumerated
linearily, one still can speak of a cell i+ 1 when
regarding a cell i. Cell i + 1, however, is not necessarily
a neighboring cell of cell i.

Atomic orbitals, y5(T), centered in respective cells, g,
serve as basis functions. Molecular orbitals are indexed
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with roman letters and are also centered in cells — as in
the Wannier picture of one-electron orbitals:

$EE) =D chf(E) = Y A (2)
oc,h oz,}_{

Matrix elements of totally symmetric operators, A, will
be translationally invariant in atomic orbitals or molec-
ular orbitals:

GEIALL) =
(BFAlQ") = () |A|¢;‘*g>

Finally, the Hartree—Fock reference determinant is @y,
and excited determinants are labelled as

h-g

_ AD-E
= A}

o, O or T, @7 (3)

ij i i

where a double index iT means orbital i located in cell i

and lower and higher indices stand for occupied and
virtual molecular (spin) orbitals, respectively.
Introducing electron correlation means, in the quan-
tum chemical sense, finding a linear combination of
Hartree—Fock reference and excited determinants,

at aEbP 1 adpb
W=0+ » c1> Z T (4)
(i) (ad) (n)(/j)(aaxbb)

which minimizes the total energy, in this expansion
within the space of maximally doubly excited determi-
nants. This leads to the CI method and a matrix
eigenvalue problem to determine the expansion coeffi-
cients, ¢;. Matrix elements are the elements of the
Hamilton matrix, H, taken in the basis of the determi-
nants, i.e. Hy = (®;/H|®,). Taking into account the
periodic structure of the underlying system the number
of unique determinants can be reduced, since it should
not matter whether an excitation starts in cell g and ends
in cell € 4 h or if it starts in the reference cell and ends in
cell h; the first index of each coefficient can be held in
the reference cell, the other being taken as relative to the
reference unit cell. Therefore the matrix elements are
reducible in the sense that, for instance,

<(D0|H|(D;‘a> <®0|H‘(Da‘ l> Ho(mﬁ—?) (5)
and
at bE bb i I i

The same simultaneous shlft of all determinantal indices
in matrix elements applies, of course, to higher excited
determinants.

Writing in a shorthand notation 0 for the reference
and 1 as lower index for the ensemble of excited deter-
minants, the general eigenvalue problem for a finite
system

0 Hp co o

; = ECorr (7)
Hy, Hy 1 cl

can be written for the periodic system with cell indices
and the use of the translational invariance as

0  Ho Hoy Hou - o co
H(J)rl Hlol H111 H121 Cl C1
Hy, Y HY HY cr | = Econ | @1
HY, COHY €1 i

(8)
The same eigenvalue problem can be recast in a smaller
one, by introducing the number of cells — in the
underlying ring problem — and by arranging for a still
hermitean matrix through the introduction of v/N:

0 \/]VH(H Co

VNHY,  HY 4+ HY + ) \VNe

€o
= ECorr . (9)
VNe

From this it is directly clear that the truncated CI
approach can never be size-consistent. It should be
remarked that the factor N only enters the first row
and the first column of the matrix, and thus, the
interaction of the reference determinant with excited
determinants and the coefficients of the excited determi-
nants. The part of the matrix concerning excited
determinants only is not affected by the system size
beyond the range of the summation of the contributions.
This point will become essential when going to dressing
techniques and the CEPA-derived methods.

3.1 CEPA-0 as a basic alternative to CI

Besides perturbation theory and the variational CI
approach, the coupled-cluster ansatz is one of the basic
approaches to the correlation problem. The wavefunc-
tion is written as an exponential excitation operator
acting on the Hartree—Fock reference determinant:

¥ =S, , (10)

with § commonly being the combination of single and
double excitations

§= Z tl‘a“
(i) (ad)

apb 4
o) "(ui“)“(ﬁ)“éa,z)‘lzb,s) : (11)
(i1) (jj) (ad) (b)
Projection of the Schrodinger equation, HY = EY,
against the reference determinant yields one equation
for the correlation energy, and the projection against the
set of excited determinants leaves a system of nonlinear
equations in the amplitudes, ¢. ¢t can be related to the
coefficients, ¢, of the expansion of the wavefunction in



the common determinantal expansion (Eq. 4). Since for
the correlation energy only the coefficients of the double
excitations are of interest, it is sufficient to determine
these from the coupled-cluster equations. Disregarding
now all the nonlinear terms, one arrives at the linearized
coupled-cluster method (LCCD), which can be equiva-
lently derived from perturbation theory in double
excitations or the interaction of electron pairs with
reduced interpair coupling (CEPA-0). For the interested
reader the details of the different derivations can be
found in the literature [26, 27].

The essential difference of the CI and the CEPA ap-
proaches lies in the fact that for CEPA-0 an eigenvalue
problem is not obtained, but a system of linear equations
has to be solved. This reads in the notation for the ring
system, with the wavefunction in intermediate normal-
ization (cy = 1),

ECorr
N

Hi, + (HY, + H) +-)er =0 . (12)

Reintroducing the coefficient ¢y as a variable, multiply-
ing the first equation by N, and subtracting from the
diagonal of the matrix block H{, 4+ H], +--- the full
correlation energy, Ecorr, the CISD equations (Eq. 9) are
exactly reproduced as an eigenvalue problem. This
procedure of manipulating the diagonal of the Hamil-
tonian matrix is commonly called ‘“‘dressing”, and is
normally applied to the CI problem. In the following
a dressing, A, will always denote a diagonal dressing

(I #J (O |H|Dy), (O |H|Dy)
— (O|H + Af| D), (O |H|Dy)):

Hyic1 =

ECorr
N (13)
H31+(H?1+H11+ 4+ A =0,

which is completely equivalent to the self-consistently
dressed “‘eigenvalue” problem

0 VNHy, €o

Hyicr =

\/]—Vngl H101+H111+"'+ \/]vcl

co
= Ecorr . (14)
V/Ne

The dressing to be introduced is only that for the first
matrix block, /Y|, in Eq. (8); thus, if it does not contain
the number of cells, N, in an explicit manner, any
dressing, A, which can be written in the above form,
either as pure A in CEPA-0 equations or as Ecoyr + A
from the CI eigenvalue problem, should result in a size-
consistent correlation method. It has to be stressed,
although, that the only variational method is given by
the CISD procedure.

The different CEPA methods compared and dis-
cussed in the literature, a meeting point, the *“full
CEPA”, from the CEPA side, or self-consistent size-
consistent CI [(SC)>CI] from the CI side, of Daudey

(ECOI’I' + Al)
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et al. [28] may serve as a model. To restore the size
consistency of the CI eigenvalue problem, unlinked
diagrams of double excitations are suppressed through
inclusion of diagrams involving appropriate quadriex-
cited determinants. The dressing involved (of the CI
matrix in Ref. [28]) can be written as the full correlation
energy minus the forbidden quadriexcitations — the
exclusion principle violating (EPV) diagrams for exam-
ple, indices i, j, a and b:

= Ecorr — Z

klcd€EPV (i,j,a,b)

Z <(D0‘H|q)kl>ckl (15)

klcd€EPV (i,j.a.b)

ab a abc
ECorr + A;‘j <(D b‘H‘q)zjll)cld>ckl

EPV means here that at least one of the indices , /, ¢, d is
equal to i, j,a,b. As shown in detail in Ref. [28] all other
CEPA variants can be obtained by including specific
subsets of the EPVs in the summations — CEPA-2 takes
further into account only determinants with the same
holes as the original determinant to be dressed and
CEPA-3 leaves the additional freedom of a third hole
index. As the to the (SC)?CI opposed extreme of the
CEPA methods figures CEPA-0, by not correcting at all
for EPV diagrams. It may be stressed that the inclusion
of EPV diagrams corrects the size-consistency error for
the CI procedures, whereas CEPA methods themselves
are from the start size-consistent. The dressings for the
methods discussed so far are collected in Table 1. As
orbital indices, and in particular limited sets of orbital
indices, enter explicitly in the dressing formulae, CEPA
methods beyond CEPA-0 can never be invariant under
internal orbital rotations, such as localization proce-
dures.

Another class of correlation methods is accessible
from the CI eigenvalue problem. Gdanitz and Ahlrichs
[30] corrected the size-consistency problem by intro-
ducing a functional acting on the norm of the CI wave
function. This results in a correction by a factor
(1 —%ECOH), with #n being the number of electrons in
the system [10, 30]. The deeper origin of this so-called
averaged-coupled-pair functional (ACPF) lies in the
accounting for possible pair excitations, leading to an

Table 1. Different dressings, Af,.b, to address the variety of coupled-
electron-pair-approximation (CEPA) methods within the same
algebra. For CEPA-2 the quadriexcited exclusion-principle-violat-
ing (EPV) determinants are written explicitly and reference is made
to the “‘e” tables introduced in Ref. [29]

CEPA-0
CEPA-2 Z DY H|D) i ~
=D (Do | )i = —e(i. )
cd
CEPA-3 = > (o [H|Dg ) el — > (Do [H| D5 e
ked ked
+ ) (Do HIO )5 = —e(i) — e(j) + i, j)
cd
(SOy’CI - Z (®o[H|OF ) e

EPV(i,j,a,b)
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exact result if the electron pairs do not interact between
themselves. In the present, CEPA-adapted, writing of
the CI approach, the dressing is still diagonal and, fur-
thermore, all excited determinants are dressed equally.
This makes it evident that ACPF will be, as CI and
CEPA-0 are, invariant with respect to orbital rotations
within the Hartree—Fock wave function. By partitioning
the total number of electrons of the system into the
number of electrons per unit cell, n, and the number of
cells, N, the dressing, A, consists of two quantities which
are directly accessible, even for an infinite periodic
system:

:,g Ecorr
n\ N '

The ACPF has been considered in more detail by Szalay
and Bartlett, leading to the averaged-quadratic-coupled-
cluster (AQCC) approximation [10], which, despite its
name, is an extension of the ACPF in that corrections to
the CISD for the two-electron system should be avoided
and interacting pair excitations are also impossible for
three electrons. Unlike ACPF, however, AQCC is not
exact for noninteracting electron pairs [31].

When including the possibilities and restrictions of
pair formation in virtual space, the method has been
termed AQCC-v [32]. As the AQCC methods have their
origin in the ACPF, the expressions are quite similar to
the ACPF dressing in the periodic system context,
namely in that the number of electrons can be parti-
tioned into electrons per cell and the number of cells
equally for the number of virtual orbitals in the total
system. In the limit of large systems, the AQCC yields
exactly twice the ACPF dressing and AQCC-v includes
the ration of the number of occupied and virtual orbital
per cell. These more Cl-oriented methods are presented
in Table 2 in the same notation as in Table 1. In mo-
lecular quantum chemistry, one interesting feature of CI,
ACPF, and AQCC lies in the easy generalization to
multireference cases, an aspect which has been devel-
oped by the original authors. This will, however, not be
followed here, where a connection to the CEPA and
coupled-cluster-derived methods is the main issue.

Quite recently, the dressing techniques for CI meth-
ods have been extended to the CCSD level of theory [11,

(16)

Table 2. Different dressings, Af.b, for more configuration-
interaction (CI)-based correlation methods. The dressing applies
as previously to the CEPA-0 derived systems of linear equations. N,
and N, are the total number of electrons and virtual orbitals,
respectively, and »n and n, are the same quantities per unit cell. N
denotes the number of cells in the system

CISD _EZCOn‘
ACPF ~ = (Ecou/N)
(Ne — 2)(Ne — 3) 4
AQCC _ECorr<1 - Nc(Nc — 1) ) — _Z(ECorr/N)
(Ne - 2)(Ne - 3) (Nv - 2)(NV - 3)
AQCC-v — Ecor (1 TTNMe-D) N, )

4 n
— ——(Ecorr 1
n( ¢ /N)( +2n\,)

Ne, n: electrons; Ny, ny: orbitals

33]. The commonly employed iterative algorithm to
solve the nonlinear CCSD equations is given by a
Newton—Raphson scheme, but the equations can be
rearranged to be solved with linear algebra methods.
The equivalent of the solution of the simplest quadratic
equation

¥ 4+bx+c=0
would be the iteration prescription
< + xi{l

b

with the same solutions, if convergent. The CCD
equations (without single excitations), read, as given in
Ref. [11],

1
@r(1+ 572 ) 00} + S0 Ho)e
J

— Econrc =0,

X; =

(17)

where the analogy with the simple quadratic equation
may be obtained within a few manipulations.

To stabilize the algorithm for solving the CCSD
equations by means of a Cl-like eigenvalue problem, the
authors of Ref. [11] proposed not a diagonal dressing of
the CI matrix, but rather a dressing of the first column of
the Hamiltonian matrix. In order to remain within the
diagonalization of a hermition matrix, a dressing of the
first row and, to counterbalance this dressing, a dressing
even of the Hartree-Fock energy, (®y|/H|®), was nec-
essary. Within the present CEPA dressing this redressing
of the reference becomes obsolete and the non-linear
CCSD equations are already reduced (by Eq. 17) to the
solution of a system of self-consistently dressed linear
equations.

By including monoexcitations, i.e. CCSD instead of
CCD, the nonlinear terms will comprise combinations of
Ti and T», at most fourth order in 77 due to the bielec-
tronic nature of H. Looking at the matrix element
(®;| 1HT}|®p), this can be partitioned into

<(I>1|%HT22|CD0>_< > <c1>0|H|q>J>cJ> cr

J,D;®;#0

in (SC)*DCI as ECOH—Z EPV

+ Z (D H|®y k) s ek
J<KJK#I

(18)

true quadriexcitations

with diexcitations /, J, and K. D;®; # 0 stands here for
diexcitations, J, acting on ®;, which lead to possible,
non-EPV, quadriexcitations. One may recognize that the
first term serves as in (SC)>CI for the suppression of
unlinked diagrams introduced via the CI, but leading to
the noninvariance within orbital rotations and that the
second term adds higher excitations and additionally
restores the invariance with respect to orbital rotations.
It might be added that for the derivation of the LCCD
equations from the CCD equations the suppression of
the nonlinear terms (1/2HT3) is the second step after
accounting for the correlation energy, Ec [34]; therefore,



both properties, invariance with respect to orbital
rotations and size consistency, are present in CEPA-0.

A last point can be made about the invariant for-
mulation of MP2 as given by Pulay and Sab¢ [35] and
Forner [13]. The invariance with respect to orbital ro-
tations is achieved by summing to infinity all diagrams
containing off-diagonal Fock-matrix elements as addi-
tional pertubation series. Remembering that the Fock
operator is a pure one-electron operator and that sum-
ming to infinity the series of double excitations leads to
the CEPA-0 equations, the equivalent will now be not to
solve the CEPA-0 equations with the matrix formed by
elements of the Hamiltonian ((®;|H|®;)) but rather the
equations formed by elements (®;|F|®;) of the Fock
operator instead. The resulting system of equations
is exactly the same as that given by Pulay and Sab¢
or Forner and, not surprisingly, size consistency and
invariance are present.

3.2 Aspects of possible implementations

For the solution of the CI eigenvalue problem a
standard procedure has become the iterative Davidson
diagonalization [36] with the direct construction of the
action of H on YW, without explicit storage of the
Hamiltonian matrix. A self-consistent dressing can be
easily introduced into the Davidson iterations so that
dressing and solution of the (dressed) eigenvalue prob-
lem are managed in a single set of iteration cycles.
Things are slightly different when trying to solve
iteratively the system of linear equations. The commonly
employed conjugate-gradient procedure [9, 37, 38] builds
a sequence of optimal directions towards the minimum
of a quadratic form. This sequence of directions is more
difficult to modify for a self-consistent dressing of the
matrix than the effective Hamiltonian in the Davidson
procedure. Thus, in the case of solving a system of linear
equations, a solution is iteratively attempted at a low
precision, the dressing is calculated and applied, and the
new system of linear equations is solved at a higher
precision. This is repeated until the loop of dressing and
solution converges to a given maximum precision. Note
that for all the dressings presented, with the exception of
coupled-cluster theory, only matrix elements of the
Hamiltonian matrix enter which have already been
computed as interactions of the reference determinant
with excited determinants. The dressing, as long as it is
applied to the diagonal only, is therefore of negligible
computational demand with respect to the actual
solution of the linear algebra problem and the contruc-
tion of the action of H on V.

The calculations reported in the next section were
performed with different working codes: for ring systems
the necessary integrals over atomic orbitals are gener-
ated with a standard tool, for example, MOLCAS [39] or
DALTON [40], and preparation of the integrals, the self-
consistent-field (SCF) cycles, the four-index transfor-
mation, and the correlation calculations are treated by
several specific routines. For the infinite systems the
Fock matrix was obtained from the periodic SCF code
CRYSTAL92 [41], and generation of the localized
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orbitals, the four-index transformation, as well as the
calculation of the correlation energy in the various
schemes is performed within routines similar to those of
the ring systems — cell indices are cut at a reasonable
distance from the reference cell. Thus, the information,
whether an infinite system or a finite ring system is dealt
with, is only apparent in the construction of the Fock
matrix. Once these matrix elements are present, the
further steps can be executed without knowing the real
size of the system, on the condition that the system is
periodic and that all information necessary can be
obtained from a region around the reference cell.

4 Selected results
4.1 Hydrogen rings

As in previous work [25, 42] hydrogen rings are
considered in a minimal basis: in a molecular setup,
having interatomic spacings » and 2r and as a metal-like
system with equal interatomic spacings with the same
of 0.74747A." With this model system one can gain an
overview of the performance of the different methods
with respect to increasing system sizes: with a realization
of weakly interacting electron pairs and with completely
delocalized electrons, facing problems such as symmetry
breaking and a slow decrease of individual contributions
to a total correlation energy (per H; unit). For the
smallest hydrogen rings, even full CI results can be
obtained with reasonable effort’.

First, the molecular case is studied.’* The imple-
mented correlation methods of Tables 1 and 2, except
for the non-size-consistent CISD, and the full CI
in comparison to the “pairs” CCSD/(SC)>CI and
CCSD(T)/ACPF are shown in Fig. 1. The close coinci-
dence of the CCSD and the (SC)>CI results can be ex-
plained by the electron pairing on individual sites: linked
diagrams involving quadriexcitations (as in Fig. 2) are of
only minor importance when localized orbitals are used,
because either an EPV is produced or orbital indices are
located in different unit cells. In canonical, completely
delocalized orbitals electron pairs on the individual unit
cells are no longer represented by a single molecular
orbital; thus, the diagrams not included in (SC)? of the
above type should be larger in magnitude and one
expects that the (SC)? gives smaller correlation energies
in canonical orbitals. CCSD is invariant under orbital
rotations.

In this model system, ACPF and CCSD(T) are closest
to the full-CI curve. Not too astonishingly, AQCC and
AQCC-v lie in this case far off from the ensemble of

'In order to study the metal-like systems, ring molecules of the size
Hy, > should be chosen to avoid multireference cases with
degenerate canonical frontier orbitals

2 Full CI results were obtained by S. Evangelisti, Bologna (Italy)
and Toulouse (France)

3 CCSD and CCSD(T) energies were calculated with the MOLCAS
program package [40]
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Fig. 1. Correlation energy per

He molecule. Loft the diftoent hydrogen rings - molecular case

correlated-electron-pair-ap-
proximation (CEPA) methods

as well as the averaged-coupled- 0015 '
pair functional (4CPF), the PG
averaged-quadratic coupled —B -0.0162 .
cluster (4QCC), and the AQCC
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Fig. 2. The simplest of the linked diagrams passing through a
quadriexcitation. Diagrams of this type are included in CCSD, but
are absent in (SC)>CI

CEPA methods, because they seriously underestimate
the correlation energy. This reflects the incorrect treat-
ment of the only essentially weakly interacting electron
pairs in AQCC, as stated in the previous section.

A slightly different picture emerges when going to
the metal-like case. From the closing of the gap — the
smallest difference of the orbital energies of occupied
and virtual orbitals in canonical orbitals — when in-
creasing the ring size, one expects that perturbation
theory in canonical orbitals will result in an increasing
correlation energy, since diagrams involving orbitals
around the gap will become overproportionally more
and more important due to small energy denominators.
Methods invariant to orbital rotations should follow this
trend, as was show in a previous article [25].

Quadriexctitations are more important now, and thus
CCSD and (SC)*CI coincide less than for the molecular
case. The importance of triples manifests itself in the
rather important difference of CCSD and CCSD(T), the
latter still being close to the much less expensive ACPF.
CCSD(T), ACPF, and the full CT are well comparable.
AQCC-v, however, again underestimates the correlation
energy significantly, but not as seriously as in the
molecular case, and is now in close coincidence with
(SC)*>CI and CCSD. CEPA-2, with the inclusion of EPV

corrections acting on the holes of the excited determi-
nants, improves the CEPA-0 overestimation of the cor-
relation energy by only a very small amount, whereas
CEPA-3, which introduces a third hole in the matrix
element, lies very close to AQCC, but is still far from
(SC)*CIL.

4.1.1 Orbital rotations and (SC)*CI

The CEPA methods beyond CEPA-0 are not invariant
under orbital rotations, as the explicit use of orbital
indices already indicates. In Ref. [28] the authors state
that (SC)>CI will be size-consistent and lead to separable
wave functions, at least when localized orbitals are used.
In this subsection dealing with the calculations on
(small) hydrogen rings, the question of the importance
of orbital rotations will be followed. For (H),,, in
a minimal basis, perturbation theory is invariant to
localization beyond the creation of Wannier functions,
i.e. one occupied and one virtual orbital per H,
molecule. This is due to the structure of the formulae,
which demand evaluation of bielectronic integrals and in
this case a single energy denominator. For CEPA
methods with the (self-consistent) solution of a system
of linear equations, orbital rotations beyond the Wan-
nier-function definition may become of importance. To
investigate this, three different sets of orbitals are used
and the results are compared to CCSD and SDCI. Two
sets of localized orbitals are obtained by starting the
SCF procedure either with orbitals centered on the
atoms, an ionic starting vector, or with orbitals centered
on the bonds, i.e. the ¢ and ¢* orbital of the hydrogen
molecule in the reference unit cell. In the case of the
metal-like rings this leads without correction to the two
symmetry-broken solutions, described as the atom-
centered charge density wave or the bond-centered
charge density wave as alternative solutions to the
Hartree-Fock equations [42] with their own density
matrix. By forcing the density matrix to maintain a



structure according to the symmetry-adapted Hartree—
Fock solution, orbital rotations may still lead to atom-
or bond-centered molecular orbitals. The third set of
molecular orbitals for the rings are the canonical ones,
the equivalent to Bloch orbitals. In principle, by defining
unit cells with more than one H, molecule, a whole series
of localizations or orbital mixtures may be possible,
filling the space between the highest localization of the
smallest possible unit cell and the complete delocaliza-
tion of the Bloch functions.

The curves for the (SC)>CI results for the three sets of
orbitals together with the ACPF and CCSD results are

Fig. 3. Correlation energy per
H; molecule. Left, the different
CEPA methods, ACPF,
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displayed in Fig. 4. In the molecular case the dependence
on orbital localization on the (SC)>CI results is much
stronger than the splitting between CCSD and ACPF,
leading in canonical orbitals to an underestimation of
the correlation energy comparable to that of AQCC-v
(Fig. 1). For both the atom-centered and the bond-
centered Hartree—Fock orbitals localization gives very
small contributions of quadriexcitations; thus, the dif-
ference to CCSD remains small — the optimum being the
symmetric, bond-centered orbital set. In the metal-like
case, on the other hand, where quadriexcitations become
quite important due to the inherent delocalization of
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molecular orbitals, the deviation of (SC)>CI from CCSD
or ACPF is less dramatic and also the difference between
the two sets of localized orbitals becomes negligible. The
spread of the different (SC)?>CI curves now has the same
magnitude as the difference between ACPF and CCSD.

4.1.2 Size consistency of the Davidson correction

For the ring systems, a widely used formula for correcting
the size-consistency error of the CISD correlation energy
in the form of the so-called Davidson correction may be
employed. The particular usefulness of the Davidson
correction lies in the fact that only the coefficient of the
reference determinant, ¢y, has to be considered, without
changing the wave function The original version of
Davidson [43] asl — c0 was renormalized by Siegbahn [44]
to (1 — ¢)/cj. Davidson and Silver [45] proposed a more
elaborate form, based on higher-order perturbation
expansions: (1 —c3)/ (2¢3 — 1).

Both corrections, Siegbahn’s and Davidson and Sil-
ver’s, have been applied to the two series of hydrogen
rings and are displayed together with the CISD and
CEPA-O results on these systems (Fig. 5). Clearly, the
CISD curve did not scale correctly with the system size,
and Siegbahn’s proposition of restoring size consistency
fails to maintain a stable value for the correlation energy
per hydrogen molecule even for moderately sized rings.
The correction of Davidson and Silver, on the other
hand, coincides in the molecular case with the overesti-
mation of the correlation energy by CEPA-0 and fails as
in the metal-like case to restore the size consistency.

One may wonder why the corrected CI energy lies so
close to the CEPA-0 curve in the case of molecular hy-
drogen. From the model CI problem of N noninteracting
electron pairs

0 \/NH(” Co co
:ECOrr (19>
\/NHJI Hi VNey VNe¢y

Fig. 5. The two variants of
the Davidson correction,
applied to the model hydrogen

molecular case

one arrives at the eigenvalues

:Hll
2

H
E + ( “> +NH}, — \/NHy,  for large N

2
and an expression for c¢:
2
H11 o 1 - 2C0

WHO' _cm/l—cg .

On substituting ¢y by cos ¢ and using the trigonomet-
rical formulae one has

(20)

5are cot—— | (21)
2\/_1‘101

which can be expanded around ¢ = n/4 by help of

cos (a + b) = cosacosb — sinasin b, leading to

H
\f+ L, B L
2 "4/NHy

On inserting this expression into the formula of David-
son and Silver, one corrects the CISD energy exactly
towards the CEPA-0 result

HZ
N oL

Hy,
at least in the limit of large N.

In the case of metal-like hydrogen rings, where not
only local electron pairs dominate the scenario, the

Davidson formula remains a first approximation and
one should apply instead the full correlation methods.

(p:

(22)

E=-—

4.2 The LiH polymer

For the hydrogen systems results were obtained entirely
in the framework of rings. In this section an infinite
polymer is studied, with the same methods, in close
comparison to similar rings. One could deduce polymer
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properties in the spirit of the incremental scheme from
smaller sections of the polymer, these then being treated
as molecules. Convergence of the difference of a section
of N+1 cells and a section of N cells may be rather
rapid, as has been shown for polyacetylene [6]. With the
ring approach convergence towards polymer properties
is much slower due do the varying curvature with the
system size and, therefore, the constantly varying bond
geometries. In the incremental scheme, however, several
calculations on larger systems have to be performed and
differences are to be calculated.

When treating larger molecules or ring systems and,
certainly, when studying infinite periodic systems, sum-
mations and molecular orbitals have to be truncated
somewhere in space and orbital indices in the determi-
nantal expansion must be restricted to some surround-
ings of the reference unit cell. In the SCF iterations on
the ring systems, all cells are taken into account. In the
polymer case, for which the converged Fock matrix of
a periodic Hartree—Fock calculation employing CRYS-
TAL [41] was used to construct the localized orbitals
within a minimal basis composed of s-type basis func-
tions only, molecular orbitals were allowed to extend
over 77 unit cells, but coefficients of basis functions
lower than 10~ were neglected. Four basis functions are
defined per unit cell, of which two were assigned to be
occupied and two to represent virtual molecular orbitals
in the starting vector. The four-index transformation
was carried out for a set of molecular orbitals located in
up to 13 cells in total, thus six to each side of the ref-
erence cell. The indices of the determinants involved run,
apart from one index in the reference cell, over all these
included molecular orbitals. For the CEPA-based cor-
relation step on the ring systems, the same truncation
was employed after the four-index transformation, since
as in the ring cases the number of determinants grows
very rapidly with the overall system size. Additionally, of
course, CCSD and CCSD(T) calculations in canonical
orbitals become prohibitive.

Two results will be looked at in this section: the
comparison of results on ring systems with results on the
polymer and the convergence of the correlation energy
for the various correlation methods with respect to the
number of cells included in the four-index transforma-
tion and in the correlation schemes, now for the infinite
polymer.

The SCF energy and the correlation energies obtained
with the different methods presented in the previous
sections are given for three ring systems and a polymer
in Table 3.

r_l". -~ T,

2T T O {

“e® ".-lr % %
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Fig. 6. LiH rings and a polymer. The Li—H distance was chosen to
be 1.685 A
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Table 3. LiH, 2{, s functions. All energies are in atomic units per
LiH. CISD + DAV stands here for the Davidson correction of
Davidson and Silver [46]

Li7H7 Li13H13 Li23H23 Polymer
(7 cells)
SCF —-8.0316123 -8.0335019 -8.034020 —8.0342660
CMP2 —-0.0166306 —0.0166354 —0.016637 —0.0166378
CISD —-0.0213675 -0.0202962 -0.018928 —
CISD + DAV -0.0230031 -0.0223003 -0.022721 -
CEPA-0 —-0.0230020 -0.0230165 -0.023021 -0.0230229
(SCY’CI —0.0228865 —0.0229004 —0.022904" —0.0229067
CCSD —-0.0228825 -0.0228967 — -
ACPF —0.0229133 —-0.0229271 -0.022931* —0.0229332
CCSD(T) —-0.0228945 -0.0229084 — -
AQCC —-0.0227798 —0.0227909 —0.022793* —0.0227941
AQCC-V -0.0225092 —0.0225219 —0.022525* —-0.0225275

4 Correlation contributions within seven of the 23 cells only

First of all it can be noted that the correlation energy
stays fairly constant with the ring size, at least for the
systems shown in the table. This may show the very lo-
calized nature of the correlation energy in this highly
ionic system with Mulliken charges of +£1.015 and
the main correlation contribution being assignable to the
H™ ion. The Davidson correction again suffers from the
approximate CEPA-0 treatment and, as in the molecular
hydrogen case, AQCC and AQCC-v yield results which
are outside the ensemble given by all other methods
beyond MP2, again due to the presence of well-localized
and effectively well separated electron pairs. The results
on the polymer, as available, fit nicely in the extrapola-
tion of the ring data. These data on the ring systems,
as displayed in more detail in Fig. 7, show the strong
dependence on the bond angle, with a maximum at
four LiH units or an H—Li—H angle of 135°, leading
thereafter to a smooth dependence on the ring size.

Whether the correlation contributions have to be
collected within a larger or smaller range, may be shown
by the dependence of the results on the cut-off radius in
the CEPA scheme. For the given polymer in the minimal
basis, 13 cells were sufficient to describe the tails of the
two occupied and the two virtual orbitals when
restricting the coefficients to be larger than 107 in the
molecular orbitals. Into the four-index transformation
13 cells were included as well, which presents the maxi-
mum number of cells in which the correlation energy
may be evaluated. Taking all possible determinants into
account, one ends up with 73179 spin determinants with
one index in the reference cell, and 878136 spin deter-
minants when performing the simultaneous rotations of
all indices of excited determinants. As shown in Fig. 8,
the inclusion of five cells with 4027 primary and 16104
secondary determinants is sufficient to arrive at a fairly
converged result for the polymer correlation energy.

4.3 Cubic Be as a model 3D system

The last model example is an artificial 3D crystal, made
from beryllium. The crystal structure of beryllium is
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Fig. 8. Correlation energy in the LiH polymer, with respect to the
number of cells included for describing excited determinants

normally a hexagonally close-packed (hcp) one with
lattice parameters a = 2.29 A and ¢ =3.59 A, ie. a Be-
Be next-neighbour distance of 2.23 A. For the present
case a simple cubic structure is used, with a rather long
lattice constant of 3.0 A. The cubic structure was chosen
since possibly large saving factors due to the high
symmetry of the hcp crystal — a Bravais lattice with a
two-atom basis — are not exploited explicitly, neither in
the construction of the localized orbitals, nor in the
correlation treatment. If one would like to introduce
symmetry operations into the algorithms, two different
symmetry-adapted representations may be used, one
reflecting the point symmetry of the unit cell for the
representation of molecular orbitals centered in the unit
cell and one for the calculation of bielectronic integrals
over basis functions, within a finite cluster region, for the
four-index transformation. This has not yet been taken

overlap integrals between molecular orbitals of different
cells were smaller than 107 for this case. The Fock
matrix in localized orbitals was diagonalized within the
reference cell in order to arrive at diagonal matrix
elements, E?, which are close to the canonical orbital
energies of the free atom.

Essentially, the crystalline, localized orbitals remain
the orbitals of the free atom, with small tails being at-
tached due to orthogonalization and interatom interac-
tion. In order to obtain the correlation energy within a
limited number of neighboring cells from these crystal
orbitals, for instance, within 19 cells, i.e. the reference
and the next two coordination spheres, a cluster of 195
Be atoms has to be cut from the bulk as the superposi-
tion of the the localized molecular orbitals within the 57-
cell expansion around each of the 19 cells to be used
in the correlation calculation and atomic bielectronic
integrals are to be calculated for this cluster.

From the large variety of correlation energies, ap-
plying the different methods presented in the previous
sections, only perturbation theory, CEPA-0, (SC)>CI,
and ACPF are displayed in Table 4 as being character-
istic in their behavior. As the case is still atomic-like, the



Table 4. Results of the correlation calculations on the single Be
atom and the 3D crystal. Localized molecular orbitals extend over
57 cells and the atomic orbital — molecular orbital transformation
was carried out for a cluster of 19 unit cells, where molecular
orbitals were attached. Determinants were allowed to have indices
in the reference cell, up to seven cells, and up to 19 cells,
respectively

Be atom  Ref. cell 7 cells 19 cells
No. of primary 9 9 3507 70575
determinants
No. of secondary( 0 21036 1270332
determinants
LMP2 —-0.0102859 —0.0102666 —0.0102787 —0.0102788
CMP2 —-0.0102859 —0.0102666 —0.0102822 —0.0102830
CEPA-0 —0.0116997 —0.0116730 —0.0116924 —0.0116925
(SC)*CI1 —0.0117011 —0.0116755 —0.0116902 —0.0116940
ACPF —0.0117053 —0.0116760 —0.0116980 —0.0116981

results do not differ very much between the crystal and
the atom case, with differences lying in the microhartree
region. The largest difference between atom and solid
arises when looking at the most restricted correlation
treatment in the solid by calculating the contributions of
the reference cell only. When including more and more
unit cells in the determinantal expansion, the closer the
results become with respect to the free atom, as if the
correlation energy per atom were a fixed quantity, but in
the case of the solid dispersed over a larger region than
in the single atom. By including more than the first co-
ordination sphere of the reference cell, i.e. going from
seven to 19 cells, however, the overall results change
little.

5 Conclusions

It has been shown how the dressing techniques known
from the CISD approach can be transferred to CEPA
methods. The terms CI and CEPA stand here not for the
underlying derivation or physical aspects, but signify
rather the practical aspect in that for the solution of the
eigenvalue problem (CI) another numerical strategy is
followed than for the iterative solution of the system of
linear equations emerging from the CEPA theories. The
advantage of the latter strategy is the simple applicabil-
ity to infinite periodic systems, since the (infinite)
quantity Eco, in the CI problem is used as the desired
and limited quantity Eco:/N. Applied to ring systems
as finite, but still periodic systems, the results of both
approaches are exactly the same.

Despite its completeness, the full CEPA or (SC)>CI
still suffers from noninvariance with respect to different
molecular orbital sets. Averaging methods, such as
ACPF or AQCC, and the basic CI and CEPA-0, being
accessible via the same matrix-dressing techniques, have
the advantage of resulting in invariant correlation
energies whatever the orbitals are in which the wave
function is expressed. In perturbation theory (MP2) the
same invariance is achieved in a CEPA-0-like solution
of a system of linear equations, by replacing the full
Hamiltonian, H, by the Fock matrix, F.
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Concerning practical results it has been shown that
the commonly employed Davidson correction, in two of
its published variants, has to be carefully regarded for
large systems. For ring systems and 1D systems, poly-
mers, the number of determinants included in a corre-
lation treatment remains a quantity which can be
handled with standard computational resources. When
going to 3D periodic systems, however, the numerical
effort grows very rapidly with the necessarily present
delocalization of molecular orbitals. The beryllium cubic
crystal shows that even the very limited interatomic
interaction and the limited basis set tails of the orthog-
onal localized orbitals demand a quite large region of
the solid to be exploited, for example, the decay of the
orbitals is about a factor of 10~* when going from the
reference cell to the outer cells of the first five coordi-
nation spheres. Therefore it should be of predominant
interest to include explicitly symmetry considerations in
the working scheme — the road is already being prepared
[47] by the development of the practical implementation
of CRYSTAL from the original concept of solving the
Hartree—Fock equations for periodic systems.
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